class tensorflow::Tensor
Represents an n-dimensional array of values.
Member Details
tensorflow::Tensor::Tensor()
Default Tensor constructor. Creates a 1-dimension, 0-element float tensor.
tensorflow::Tensor::Tensor(DataType type, const TensorShape &shape)
Creates a Tensor of the given type
and shape
. If LogMemory::IsEnabled() the allocation is logged as coming from an unknown kernel and step. Calling the Tensor constructor directly from within an Op is deprecated: use the OpKernelConstruction/OpKernelContext allocate_* methods to allocate a new tensor, which record the kernel and step.
The underlying buffer is allocated using a CPUAllocator
.
tensorflow::Tensor::Tensor(Allocator *a, DataType type, const TensorShape &shape)
Creates a tensor with the input type
and shape
, using the allocator a
to allocate the underlying buffer. If LogMemory::IsEnabled() the allocation is logged as coming from an unknown kernel and step. Calling the Tensor constructor directly from within an Op is deprecated: use the OpKernelConstruction/OpKernelContext allocate_* methods to allocate a new tensor, which record the kernel and step.
a
must outlive the lifetime of this Tensor .
tensorflow::Tensor::Tensor(Allocator *a, DataType type, const TensorShape &shape, const AllocationAttributes &allocation_attr)
Creates a tensor with the input type
and shape
, using the allocator a
and the specified "allocationattr" to allocate the underlying buffer. If the kernel and step are known allocation_attr.allocation_will_be_logged should be set to true and LogMemory::RecordTensorAllocation should be called after the tensor is constructed. Calling the Tensor constructor directly from within an Op is deprecated: use the OpKernelConstruction/OpKernelContext allocate* methods to allocate a new tensor, which record the kernel and step.
a
must outlive the lifetime of this Tensor .
tensorflow::Tensor::Tensor(DataType type)
Creates an uninitialized Tensor of the given data type.
tensorflow::Tensor::Tensor(const Tensor &other)
tensorflow::Tensor::~Tensor()
Copy constructor.
DataType tensorflow::Tensor::dtype() const
Returns the data type.
const TensorShape& tensorflow::Tensor::shape() const
Returns the shape of the tensor.
int tensorflow::Tensor::dims() const
Convenience accessor for the tensor shape.
For all shape accessors, see comments for relevant methods of TensorShape
in tensor_shape.h
.
int64 tensorflow::Tensor::dim_size(int d) const
Convenience accessor for the tensor shape.
int64 tensorflow::Tensor::NumElements() const
Convenience accessor for the tensor shape.
bool tensorflow::Tensor::IsSameSize(const Tensor &b) const
bool tensorflow::Tensor::SharesBufferWith(const Tensor &b) const
size_t tensorflow::Tensor::BufferHash() const
bool tensorflow::Tensor::IsInitialized() const
Has this Tensor been initialized?
size_t tensorflow::Tensor::TotalBytes() const
Returns the estimated memory usage of this tensor.
bool tensorflow::Tensor::IsAligned() const
Returns true iff this tensor is aligned.
Tensor& tensorflow::Tensor::operator=(const Tensor &other)
Assign operator. This tensor shares other's underlying storage.
bool tensorflow::Tensor::CopyFrom(const Tensor &other, const TensorShape &shape) TF_MUST_USE_RESULT
Copy the other tensor into this tensor and reshape it.
This tensor shares other's underlying storage. Returns true
iff other.shape()
has the same number of elements of the given shape
.
Tensor tensorflow::Tensor::Slice(int64 dim0_start, int64 dim0_limit) const
Slice this tensor along the 1st dimension.
I.e., the returned tensor satisfies returned[i, ...] == this[dim0_start + i, ...]. The returned tensor shares the underlying tensor buffer with this tensor.
NOTE: The returned tensor may not satisfies the same alignment requirement as this tensor depending on the shape. The caller must check the returned tensor's alignment before calling certain methods that have alignment requirement (e.g., flat()
, tensor()
).
REQUIRES: dims()
>= 1 REQUIRES: 0 <= dim0_start <= dim0_limit <= dim_size(0)
bool tensorflow::Tensor::FromProto(const TensorProto &other) TF_MUST_USE_RESULT
Parse other
and construct the tensor.
Returns true
iff the parsing succeeds. If the parsing fails, the state of *this
is unchanged.
bool tensorflow::Tensor::FromProto(Allocator *a, const TensorProto &other) TF_MUST_USE_RESULT
void tensorflow::Tensor::AsProtoField(TensorProto *proto) const
Fills in proto
with *this
tensor's content.
AsProtoField()
fills in the repeated field for proto.dtype()
, while AsProtoTensorContent()
encodes the content in proto.tensor_content()
in a compact form.
void tensorflow::Tensor::AsProtoTensorContent(TensorProto *proto) const
TTypes<T>::Vec tensorflow::Tensor::vec()
Return the tensor data as an Eigen::Tensor
with the type and sizes of this Tensor
.
Use these methods when you know the data type and the number of dimensions of the Tensor and you want an Eigen::Tensor
automatically sized to the Tensor
sizes. The implementation check fails if either type or sizes mismatch.
Example:
```c++ typedef float T;
Tensor my_mat(...built with Shape{rows: 3, cols: 5}...);
auto mat = my_mat.matrix
#### `TTypes<T>::Matrix tensorflow::Tensor::matrix()` {#TTypes_T_Matrix_tensorflow_Tensor_matrix}
#### `TTypes< T, NDIMS >::Tensor tensorflow::Tensor::tensor()` {#TTypes_T_NDIMS_Tensor_tensorflow_Tensor_tensor}
#### `TTypes<T>::Flat tensorflow::Tensor::flat()` {#TTypes_T_Flat_tensorflow_Tensor_flat}
Return the tensor data as an `Eigen::Tensor` of the data type and a specified shape.
These methods allow you to access the data with the dimensions and sizes of your choice. You do not need to know the number of dimensions of the Tensor to call them. However, they `CHECK` that the type matches and the dimensions requested creates an `Eigen::Tensor` with the same number of elements as the tensor.
Example:
```c++ typedef float T;
Tensor my_ten(...built with Shape{planes: 4, rows: 3, cols: 5}...);
// 1D Eigen::Tensor, size 60:
auto flat = my_ten.flat<T>();
// 2D Eigen::Tensor 12 x 5:
auto inner = my_ten.flat_inner_dims<T>();
// 2D Eigen::Tensor 4 x 15:
auto outer = my_ten.shaped<T, 2>({4, 15});
// CHECK fails, bad num elements:
auto outer = my_ten.shaped<T, 2>({4, 8});
// 3D Eigen::Tensor 6 x 5 x 2:
auto weird = my_ten.shaped<T, 3>({6, 5, 2});
// CHECK fails, type mismatch:
auto bad = my_ten.flat<int32>();
TTypes<T>::UnalignedFlat tensorflow::Tensor::unaligned_flat()
TTypes< T, NDIMS >::Tensor tensorflow::Tensor::flat_inner_dims()
Returns the data as an Eigen::Tensor with NDIMS dimensions, collapsing all Tensor dimensions but the last NDIMS-1 into the first dimension of the result. If NDIMS > dims() then leading dimensions of size 1 will be added to make the output rank NDIMS.
TTypes< T, NDIMS >::Tensor tensorflow::Tensor::flat_outer_dims()
Returns the data as an Eigen::Tensor with NDIMS dimensions, collapsing all Tensor dimensions but the first NDIMS-1 into the last dimension of the result. If NDIMS > dims() then trailing dimensions of size 1 will be added to make the output rank NDIMS.
TTypes< T, NDIMS >::Tensor tensorflow::Tensor::shaped(gtl::ArraySlice< int64 > new_sizes)
TTypes< T, NDIMS >::UnalignedTensor tensorflow::Tensor::unaligned_shaped(gtl::ArraySlice< int64 > new_sizes)
TTypes< T >::Scalar tensorflow::Tensor::scalar()
Return the Tensor data as a TensorMap
of fixed size 1: TensorMap<TensorFixedSize<T, 1>>
.
Using scalar()
allows the compiler to perform optimizations as the size of the tensor is known at compile time.
TTypes<T>::ConstVec tensorflow::Tensor::vec() const
Const versions of all the methods above.
TTypes<T>::ConstMatrix tensorflow::Tensor::matrix() const
TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::tensor() const
TTypes<T>::ConstFlat tensorflow::Tensor::flat() const
TTypes<T>::UnalignedConstFlat tensorflow::Tensor::unaligned_flat() const
TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::shaped(gtl::ArraySlice< int64 > new_sizes) const
TTypes< T, NDIMS >::UnalignedConstTensor tensorflow::Tensor::unaligned_shaped(gtl::ArraySlice< int64 > new_sizes) const
TTypes< T >::ConstScalar tensorflow::Tensor::scalar() const
TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::flat_inner_dims() const
TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::flat_outer_dims() const
string tensorflow::Tensor::SummarizeValue(int64 max_entries) const
Render the first max_entries
values in *this
into a string.
string tensorflow::Tensor::DebugString() const
A human-readable summary of the tensor suitable for debugging.
void tensorflow::Tensor::FillDescription(TensorDescription *description) const
Fill in the TensorDescription
proto with metadata about the tensor that is useful for monitoring and debugging.
StringPiece tensorflow::Tensor::tensor_data() const
Returns a StringPiece
mapping the current tensor's buffer.
The returned StringPiece
may point to memory location on devices that the CPU cannot address directly.
NOTE: The underlying tensor buffer is refcounted, so the lifetime of the contents mapped by the StringPiece
matches the lifetime of the buffer; callers should arrange to make sure the buffer does not get destroyed while the StringPiece
is still used.
REQUIRES: DataTypeCanUseMemcpy( dtype() )
.
void tensorflow::Tensor::UnsafeCopyFromInternal(const Tensor &, const TensorShape &)
Copy the other tensor into this tensor and reshape it and reinterpret the buffer's datatype.
This tensor shares other's underlying storage.